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RESPONSE OF AN INFINITE ELASTIC PLATE TO 

AXISYMMETRIC INITIAL VELOCITY DISTRIBUTIONS WITH 

APPLICATION TO HYPERVELOCITY IMPACT* 

By Robert J. Hayduk 
Langley Research Center 

SUMMARY 

Classical plate theory is used to study the response of an infinite plate to an axi- 
symmetric initial velocity distribution over a central region. The expression for the 
bending stress is reduced to a single definite integral which depends upon the initial veloc- 
ity distribution. 
example distributions - conical, cylindrical, and spherical. The analysis indicates that 
the conical distribution causes larger  stresses at the origin and deflections of the plate 
at short t imes after initiation than either the spherical o r  cylindrical distribution. 

A simple relationship is derived for  the failure thickness of an elastic plate 
responding to an axisymmetric initial momentum, monotonically decreasing in the radial 
direction. The failure-thickness relationship is shown to correlate with available exper - 
imental hypervelocity impact data where the initial momentum was induced by disk pro- 
jectiles of various diameters. 

The deflection is reduced to the Hankel inversion integral for  three 

INTRODUCTION 

This paper presents a study of the response of an infinite, thin, elastic plate to an 
axisymmetric initial velocity distribution over a central region. 
related to an impulsively loaded plate, where the impulse is sufficiently distributed to 
ensure that the elastic plate action is the primary response and that the boundaries are 

The problem is directly 

.? 

~- -~ 

*Part of the information presented in this paper was included in a thesis entitled 
"The Response of a Single Wall Space Structure to Impact by Cometary Meteoroids of 
Various Shapes" which was submitted in partial fulfillment of the requirements for the 

Blacksburg, Virginia, June 1968. 
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degree of Master of Science in  Engineering Mechanics, Virginia Polytechnic Institute, 



so remote that they do not influence the response until some time after the maximum 
stress occurs. 

Classical plate theory, which neglects transverse shear and rotary inertia, has  
been used by many investigators to  study the response of plates to  impulsive loads. Ref - 
erence 1 contains solutions to impulsively loaded infinite plate problems frequently ref - 
erenced in the literature. Particular problems are an impulsive point force at the origin, 
an impulsive force uniformly distributed over a circular area, and an impulsive Gaussian 
distribution of pressure.  In reference 2 the interaction of the spray from a meteoroid- 
penetrated bumper with the main wall of a double-walled structure was analyzed as a 
Gaussian distribution of initial momentum impacting on an infinite plate. Reference 3 
showed that the deflections at a distance from the impact point of a large plate centrally 
impacted by a bullet agreed after a short time with those obtained by mathematically sim- 
ulating the impact by an impulsive point force of finite duration on an infinite plate. Also 
presented in reference 3 are solutions to the impulsive point force problem for  various 
t ime functions: finite duration, step function, and unit impulse function. 

A large, highly concentrated impulse on a plate will cause plastic shear deforma- 
tions. If, however, the impulse is distributed over a sufficiently large area, bending 
stresses will prevail, and the response of a plate can be well estimated by classical elas- 
tic plate theory. Axisymmetric distributed impulse loadings occur under certain circum- 
stances on the second wall of a bumper-protected structure and on a single-wall structure 
impacted by cometary meteoroids of sufficiently low density. In the first case, the 
momentum of the spray from the pulverized bumper and meteoroid material imparts an 
initial velocity to the main wall; in the second case, the momentum of the low-density 
low-strength cometary meteoroid imparts an initial velocity to the single wall. 

A general formula is derived for the maximum plate stress, and the response to 
three particular initial velocity distributions is examined in detail. A plate failure- 
thickness relationship is derived for  an axisymmetric monotonically decreasing momen- 
tum impulse. Cometary meteoroid impact on a single-wall structure is considered as a 
momentum impulse and the form of the failure-thickness relationship is compared with 
available hypervelocity impact data. 

r, 
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SYMBOLS 

a radius of central region given initial velocity 

A(p), B(p) functions of p 

beta function where a! and j3 are the arguments 
+ P) B(a,P) 
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d diameter 

E modulus of elasticity 

f geometric constant 

1 F1(a ;P;  0, (a ;P;r; 5 )  hypergeometric functions where a,P,y, and 5 are the 
arguments 

h plate thickness 

i = \I-1 

Jo(P17) 

J 1 (Pd 

J3,12(p) 

zeroeth-order Bessel function of first kind 

first-order Bessel function of f i rs t  kind 

fractional-order Bessel function of first kind 

I length of projectile parallel to direction of motion 

m mass  

M magnitude of momentum per unit a r ea  at q = 0 

n summation index 

P Hankel transform parameter 

Re( 1 real  part  of complex variable 

r radial coordinate 

S Mellin transform parameter 
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shape factor 

time 

nondimensional variables of integration 

initial axisymmetric velocity distribution over a central region of radius a 

dimensionless function specifying distribution of initial velocity o r  initial 
momentum 

magnitude of initial velocity distribution (value at 17 = 0) o r  projectile 
velocity with subscript 

transverse displacement of midplane of plate 

distance measured from and normal to midplane of plate 

gamma functions 

biharmonic operator 

nondimensional radial coordinate, r/a 

kernel of Hankel transform 

Poisson's ratio 

mass  density (plate mass  density without subscript) 

stress in general o r  s t r e s s  at origin of plate 

E p ( ~ )  = 11 47 0 uv'(u)cos($)du 

7 nondimensional time, t/k 
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Subscripts : 

co conical 

c r  critical 

CY1 cylindrical . 

f failure thickness 

max maximum 

P projectile 

SPh spherical 

ee circumferential 

rlrl radial 

V order 

Superscripts: 

A, V con st ant exponent s 

A bar over a symbol denotes the Hankel transform; a tilde over a symbol denotes 
a nondimensional value. Dots over symbols denote differentiation with respect to time. 

GOVERNING EQUATIONS 

Definition of the Problem 

Consider a thin, elastic plate infinite in extent with coordinates and dimensions as 
The plate's response to an initial axisymmetric velocity distribution shown in figure 1. 

v(q) over a central region of radius a can be predicted by classical plate bending 
theory. The initial displacement of the plate is zero and the boundary and continuity con- 
ditions are prescribed by the transformed governing equation, that is, zero slope, finite 
curvature, and finite shear per  unit length at the origin, and zero deflection, slope, curva- 
ture, and shear per unit length at infinity. 
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"ran sf ormed Governing Equation 

The governing equation for the bending of a thin plate from linear, elastic, small- 
deflection theory is 

where 

k = g \ / a  ch 

and the operator is 

The deflection w(q,t) is the transverse displacement of the midplane of the plate, a is 

the radius of the central region which is given the initial velocity distribution, c = 

h is the plate thickness, p is Poisson's ratio, and q is the nondimensional radial 
coordinate r/a. 

6 
Since the plate is infinite in extent, the problem is amenable to a zeroeth-order 

The transform and its Hankel transform in the nondimensional radial coordinate q. 
inverse are,  respectively, 

and 

where p is the Hankel transform parameter and qJo(pq) is the kernel of the transform. r 

intermediate equation after integration by parts several t imes 
Application of the Hankel transform to the governing equation yields the following 
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The te rm in braces  vanishes at the upper and lower limit on q upon application 
of the appropriate boundary conditions at infinity and continuity conditions at the origin. 
At infinity, the deflection, slope, curvature, and shear per unit length a r e  selected as 
zero and of the order necessary for the t e rms  in braces  to vanish. At the origin the con- 
tinuity conditions are selected as zero slope, finite curvature, and finite shear per unit 
length. If the time is nondimensionalized to T = the transformed governing equation 
is 

P 

d 2 1  
dT2 
-+ p4w = 0 

GENERAL SOLUTION 

The general solution to equation (4) is 

(4) 

where A(p) and B(p) are functions of the initial conditions on the plate. The function 
B(p) is zero since the initial displacement, and hence the transformed initial displace- 
ment, is zero. The first derivative of equation (5) with respect to t relates A(p) to 
the transformed initial velocity distribution; that is, 

1 dE(p, r) 
k d r  

G(p,t) = - 

(6b) w'(p,t) = - p  1 2  A b )  cos(p27) 
k 

Hence 

A(p) = kp-2&, 0) 

Substitution of equation (7b) into equation (5) with B(p) = 0 and application of the Hankel 
inversion integral (eq. (2b)) yields the displacement of the plate 
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Once the initial velocity distribution of particular interest  is transformed, the displace- 
ment reduces to the inversion integral as shown by equation (8). The infinite integral 
usually defies analytical evaluation and must be evaluated numerically. Approximate 
methods for evaluating integral transforms and infinite integrals are available in standard 
mathematics references and usually exist as subroutines in computing programs. 

With the displacement in inversion integral form, the stress, strain, shear, and 
moment distributions throughout the plate are easily obtained by differentiation and appli- 
cation of the same approximate methods for evaluating the integrals. Only loadings mono- 
tonically decreasing in the radial direction are considered in this paper. For such 
loadings the maximum stress, strain, and bending moment occur at the center. For these 
maximum responses the solution can be reduced to a single finite integral which is a func- 
tion of the initial velocity distribution only. 

and the functional forms of the stress, strain, and bending moment at the origin a r e  iden- 
tical; therefore, the discussion in this paper is limited to the s t ress .  From plate theory 
the normal radial and circumferential s t resses  at point z measured normal to the mid- 
plane are 

and 

which, because of equation (9), reduce to 

Substitution of the transform integral (eq. (2a)) for f(p) into equation (8) yields 

1 
w ( ~ , T )  = k lo uv(u) low ~ - ~ J ~ ( p u )  Jo(pq) sin(p2T) dp du (12) 
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if the order of integration is reversed. The upper limit on the first integral is unity 
because v(q) = 0 for 1 < 7 < m. The second derivative of w(q,r) with respect to q 
evaluated at Q = 0 is 

1 00 %] = - k Io uv(u) Jo pJo(pu) sin(p27) dp du 
aq q=o 

1 The infinite integral is evaluated in reference 1 as - cos($) provided T # 0. The 27 
maximum stress occurs at the origin (eq. (11) with z = h/2) and is 

(~(7)  = ( w E p  )1'2 [-Jol uv(u) cos($)d.] 
1 - P  

Note that the maximum stress is a function of time. 
and bending moment resultant per unit length) at the origin has been reduced to a single 
finite integral which can be evaluated for any particular velocity distribution of interest. 

Thus the maximum stress (strain 

SOLUTIONS FOR SPECIFIC VELOCITY DISTRIBUTIONS 

In the following sections cylindrical, conical, and spherical initial velocity distri- 
butions a r e  considered to demonstrate the application of equations (8) and (13). In the 
applications section the arbitrary magnitudes (V terms) of the example initial velocity 
distributions a r e  related to a general axisymmetric momentum impulse monotonically 
decreasing in the radial direction. 

Cylindrical Distribution 

Consider the case where the central  portion of the plate is given a uniform initial 
velocity; that is, 

By application of equation (Za), vcyl(q) transforms as 

I (15) 
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Substitution of Vcyl(p) into equation (8) gives the displacement of the plate as 

co 

wcyl(7?,7) = kVcyl Jo P-2Jl(P) J0(prl) sin(p2T) dp 

The maximum stress at the origin (eq. (13)) becomes 

which readily integrates to 

Conical Distribution 

This distribution is expressed as a velocity linearly decreasing with radius; that is, 

vco(v) = VC& - 4 

v,,(rl) = 0 

(0 .= rl < 1) 

(1 < rl < 9 

Application of the transform to this v(q) results in two integrals: 

1 1 
vc - 0 (PI = v,, Jo v Jobrl) drl - Vco Jo r12 JO(P77) drl (194 

The f i r s t  integral is identical to equation (15); the second is evaluated in the appendix. 
For the conical distribution 

The displacement becomes 

where the arguments of the hypergeometric function remain unchanged. 
equations (20) and (16) indicates that the first integral represents the displacement due to 

Comparison of 
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a uniform velocity distribution and the second integral represents the correction neces- 
sary to account for the linear decrease of velocity with radius. 

For this case the maximum stress at the origin (eq. (13)) becomes 

oc0(7) = (w Ep) 1/2 vco -s 1 u(l  - u ) c o s g ) d u  (7 # 0) (21a) 
1 - P  47 0 

Integration by par ts  several  t imes and a change of variables yields the Fresnel sine 
integral 

(4 7) - 1/2 
sin u2 du oco(7) = ( 3(1+ p )  Ep)1/2 VcoT1/2 lo 

1 - P  

For very small T ,  approximate expressions exist for the integral to facilitate numerical 
integration. 

Spherical Distribution 

The distribution is given as 

The transformed vsph(q) is 

Evaluation of this integral (see appendix) yields 

The displacement for this example becomes 

11 



and the maximum stres.s at the origin 

The integral is evaluated in  the appendix and yields 

For very small T, an asymptotic expansion for the ser ies  facilitates convergence. 

RESULTS AND DISCUSSION 

As a basis for comparing the effects of the three example distributions, the velocity 
magnitudes (V terms)  were selected to give the plates the same total initial momentum. 
This basis w a s  chosen to facilitate application to a general axisymmetric initial momen- 
tum impulse monotonically decreasing in the radial direction. 

If the diameters of the central regions and the total initial momentums are equal 
in all three cases, the velocity magnitudes a r e  related. 
for the three cases  are: 

The total initial momentums 

Momentumcyl = aa  2 hpVcyl (26a) 

Momentumco = 5 1 2  aa hpVco 

Momentumsph = 2 2  aa hpVsph 

The second and third momentum expressions equal the first if 

To demonstrate the effect that the shape of the initial velocity distribution has  on 
the displacement of the plate, the deflection at T = 0.15, 0.4, 0.6, and 1.0 (eqs. (16), (20), 

and (24)) is presented in figure 2 for the equivalent magnitudes of Vcyl, 
3 

3vcy1, and 
for the cylindrical, conical, and spherical distributions, respectively. The 5 Vcyl 
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ordinate in the plots is the nondimensional displacement obtained by dividing the actual 
displacement by kVcyl. 

displacement of the plate at a particular time and the cylindrical distribution, the least. 
The differences in  deflection caused by the various velocity distributions are large initi- 
ally, and then diminish with time. By 
same for all three distributions. 

Figure 2 indicates that the conical initial velocity distribution causes the largest  

T = 1.0, the deflection of the plate is nearly the 

The maximum bending stress at the origin of the plate for the three example velocity 
distributions (eqs. (17b), (2lb), and (25b)) with the magnitudes given by equation (26) is 
presented in figure 3 for T ranging from 0 to 0.7. The ordinate parameter is the non- 

dimensional s t r e s s  In all three cases  a distinct peak occurs and 

then the s t resses  rapidly converge. 
tributions a r e  1.58 and 1.22 t imes that of the cylindrical distribution. Hence, the peak 
s t ress  at the origin also indicates that the conical initial velocity distribution causes 
larger responses of the plate than either the spherical o r  cylindrical distributions. Since 
it is known that classical plate theory predicts a spurious response at all points of the 
plate immediately after application of a sharp impulse (ref. 3), the irregular s t r e s s  var-  
iations occurring between T equal to 0 and 0.1 a r e  thought to be mathematical anomalies 
rather than physical phenomena. 

The peak s t resses  for the conical and spherical dis-  

The results for the displacement and s t r e s s  at the origin for the three equivalent 
velocity distributions indicate, as one would expect, that a plate res i s t s  a more distributed 
impulse load better than a concentrated one. 

APPLICATIONS 

General Momentum Impulse 

Frequently in design, the minimum plate thickness to prevent failure due to an 
5 

impulse is required. Such a design equation can be obtained from the preceding analysis 
for a general, axisymmetric, monotonically decreasing momentum impulse on an infinite 
plate. 

If Mv'(q) is the momentum per unit a r e a  imparted to the central portion of rad- 
ius  a of an infinite plate where M is the magnitude at q = 0 and v'(q) is a dimen- 
sionless function specifying the distribution, the initial velocity of the plate is 



Substitution of v'(q) for  
Ph 

v(q) in equation (13) gives 

1 
o(r) = ( 3(1+ p) E ) 1/2 --I M 1 uvt(u) cos($) du 

1 - p  P h 4 7  0 

The M/ph factors are specific values of Vcyl, Vco, and Vsph of the previous 
example velocity distributions for cylindrical, conical, and spherical momentum distri- 
butions, respectively. The thickness of the plate which will just resist failure is of main 
interest. If one assumes that the response of the plate is bending and elastic until failure, 
the maximum stress at failure will be some critical stress acr and the plate failure 
thickness some hf. Let be the maximum value of Ep where 

p = 47 1 s1 0 uv'(u) COSK) du 

Equation (28) then becomes 

o r  when solved for the failure thickness, 

Hypervelocity Impact 

Spacecraft designers need design equations to specify the thickness of both single- 
and double-walled space vehicles to prevent penetration by particulate debris (meteoroids) 
while in space. Equation (30) can be applied to the impact of a cometary meteoroid with 
a single-walled space structure and to the impact of the spray emanated from the bumper 
with the main wall of a double-walled structure. However, the discussion here  will be 
restricted to cometary meteoroid impact on single-walled space structures since the 
momentum per  unit area distribution of the meteoroid-bumper spray cannot be defined at 
this t ime in t e rms  of bumper and meteoroid parameters. 

3 

The assumptions made about the phenomena are: momentum exchange is the pri-  
mary mechanism of interaction; the t ime of exchange is instantaneous; and the momentum 
of the impacting mass is negligible with respect to the momentum of the wall after impact. 
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For axisymmetric cometary meteoroids, 

M = p  I V P P  P 

4 

where p , I , and Vp are the meteoroid density, length, and velocity, respectively. 

For the simple axisymmetric examples considered here the meteoroid mass  density p 
can be expressed as 

P P  
P 

- fPmP -- 
pp nd 2 lp 

i where f p  is a geometric constant. For cylinders, cones, and spheres, f p  has values 
of 4, 12, and 6, respectively. Equations (31) and (32) substituted into equation (30) yield 

(3 3) 

where * =  fP(iip)max is a factor depending only on the shape of the meteoroids. 
71 

Low-density projectiles a r e  difficult to launch in the laboratory; consequently, 
there are no single-wall data available which simulate the conditions assumed in this 
analysis. 
different diameters impacted aluminum plates. 
tiles were shown to vary as projectile velocity to the first power. However, if  the data 
a r e  plotted as failure thickness hf, as a function of total projectile momentum per unit 

However, data a r e  reported in reference 4 where plastic film disks (ref. 5) of 
The failure thicknesses for both projec- 

- 
m V  - p, as in figure 4, this relationship is also approximately linear. 

d2 
a rea  

can be obtained from figure 3 by noting that the curves actually 

\, plotted in the three cases  are 3iic0(7), cJSph(7), and ECy1(7). The curves were plotted 

in this manner to give the plates the same total initial momentum. One needs only to 
estimate the peak values in the figure and multiply by 1/3 and 2/3, respectively, to arr ive 
at (zco>m, = 0m264, (Esph) max = 0.408, and ( Ecyl)max - 1  - Substitution of these 

values of (??p)mz along with the appropriate values of f p  into the shape factors 
yields 

3 -  
("P) max Values of 

4 
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2 
*cy1 = if (344 

- 3.17 
*co - 7 

2.45 
*sph = 7 

Thus equations (33) and (34) indicate that a single-walled structure of a space vehi- 
cle must be made thicker to prevent failure due to  impact by a conical meteoroid than 
by either a spherical or  cylindrical meteoroid when all three have the same momentum 
and diameter at impact. 

A 

i Richard Madden, Langley Research Center, 1967, employing similar methods, 
obtained an identical expression (unpublished) for equations (33) and (34a) for the par- 
ticular problem of a right circular cylinder. 

CONCLUDING REMARKS 

Linear, elastic, small-deflection plate theory was used to study the response of an 
infinite plate to an axisymmetric initial velocity distribution over a central region. The 
stress at the origin w a s  reduced to a single definite integral which depends upon only the 
initial velocity distribution and the deflection was reduced to a Hankel inversion integral 
for three example distributions. 

Cylindrical, conical, and spherical initial velocity distributions, which gave the 
plate the same total initial momentum, were studied to demonstrate the application of the 
equations and to compare the effects of varying the distribution. The analysis indicated 
that the conical distribution caused larger deflections and s t resses  in the plate than either 
the spherical o r  cylindrical distribution. 

A simple relationship was derived for the failure thickness of an elastic plate 
responding to an axisymmetric initial momentum, monotonically decreasing in the radial 
direction. 

jectiles of various diameters. 

The failure -thickness relationship was shown to correlate with available exper - 
imental hypervelocity impact data where the initial momentum was induced by disk pro- 

I C  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 4, 1969, 
124-08-01-21-23. 
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APPENDIX 

EVALUATION OF INTEGRALS 

Three integrals which appear in the text are evaluated in this appendix. The three 
integrals are evaluated by considering them to be Mellin transforms of particular func- 
tions and by selecting the appropriate value for the transform parameter. 

By definition the Mellin transform of a function is 

a0 

g(s) = 1 f(u)uS-l du 
0 

The integral 

which appears in equation (19a) can be considered as the Mellin transform of 

with v equal to zero and s equal to 3. The transform of equation (A2) is given in  
reference 6 (p. 326) as 

which yields 

The integral 

which appears in equation (23a) can also be evaluated as a Mellin transform. On 
page 327 of reference 6 the Mellin transform of 
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APPENDIX 

is given as 

1F2 ( y ; v  + 1 , E  2 + 1 + A;- 
2 ~ + 1 r ( v +  1) 

1 
2’ provided Re h > -1 and Re s > -Re v. With v = 0, s = 2, and X = - equation (A5) 

is evaluated as L 

The identical numerator and denominator parameters of the hypergeometric function can- 

cel  and leave 

tions by the relationship (ref. 7, p. 100) 

. This hypergeometric function is related to the Bessel func- 

By use of this relationship, the hypergeometric function can be expressed as 

and the final result as 

The integral 

1 
q(l  - q2)1/2 c o s ( g )  dq 

which appears in equation (25a) requires a simple change of variables to convert it to a 
1 Mellin transform. Let x = q2 and b = -- then the integral becomes 4 7’ 
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APPENDIX 

'sl (1 - x)1/2 cos(bx) dx 
87 o 

On page 320 of reference 6, the Mellin transform of 

(A14) 
f(x) = (1 - ~ ) ~ - ' c o s ( b x )  

f(x) = 0 

(0 < x  < 1; Re v > 0) 

(1 < x < "0; Re v > 0) 

is given as 

1, - B(s,v) F (s ;s  + v;ib) + lF1(s;s + v;-ib) 2 [1 1 1 
for Re s > 0. By letting v be 3/2 and s be 1, the desired integral becomes 

1 lo (1 - x)'l2 cos(bx) dx = LFl (l;g;ib) + lF1 (J.;$-ib] 

The confluent hypergeometric function is the power ser ies  

F ( a ; p ; ( )  = 1 + g A  + 1) 2, . . .  'i 1 1  p 1 I  p(p + 1) 2: 

where Pochhammer's notation used for the numerator and denominator parameters is 

= a(a+ l)(a+ 2) . . . (a+ n - 1) ( A W  

and 

Adding the confluent hypergeometric functions of equation (A16) te rm by term eliminates 
all the imaginary terms. In general, then 
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APPENDIX 

These results give 

which reduces to 

- (21-14- 1) ‘I1 q(1 - q2)1’2cos(g)dv = 2- .rr1/2 f ( -1)”(47) 

47 0 n=O r (2n  + g) 
An asymptotic expansion of the series for very small  T is easily obtainable by adding .I 

the asymptotic expansions of the two confluent hypergeometric functions in equation (A19). 
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Figure 1.- Configuration of th in,  elastic plate in f in i te  i n  extent wi th in i t ia l  velocity distribution. 
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Figure 2.- Comparison of the plate's deflection at various nondimensional times for  t he  three in i t ia l  velocity distributions. 
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Figure 2.- Concluded. 
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Figure 3.- Variation of the maximum stress at the or ig in  w i th  t ime for  the three example in i t ia l  velocity distr ibutions. 
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Data obtained from reference 4. 
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